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Abstract
The epigenetic modifications are organized in patterns determining the
functional properties of the underlying genome. Such patterns, typically
measured by ChIP-seq assays of histone modifications, can be combined and
translated into musical scores, summarizing multiple signals into a single
waveform. As music is recognized as a universal way to convey meaningful
information, we wanted to investigate properties of music obtained by
sonification of ChIP-seq data. We show that the music produced by such
quantitative signals is perceived by human listeners as more pleasant than that
produced from randomized signals. Moreover, the waveform can be analyzed
to predict phenotypic properties, such as differential gene expression.
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Introduction
Sonification is the process of converting data into sound. Soni-
fication itself has a long, yet punctuated, story of applications in 
molecular biology, several algorithms to translate DNA1 or pro-
tein sequences2,3 to musical scores have been proposed. The same 
principles have also been extended to the analysis of complex data4 
showing that, all in all, sonification can be used to describe and 
classify data. This approach is sustained by the idea that music is 
acknowledged as a way to deliver information5. Indeed, the very 
same procedures may also be applied for recreational purposes.

One of the limitations of sonification of actual DNA and protein 
sequences is their intrinsic conservative nature. Assuming the dif-
ferences in two individual genomes are, on average, one nucleotide 
every kilobase6, the corresponding musical scores would have little 
differences.

On the contrary, dynamic ranges typical of transcriptomic and epig-
enomic data may provide a richer source for sonification.

In this work we describe an approach to convert ChIP-seq signals, 
and in principle any quantitative genomic feature, into a musical 
score. We started working on our approach for amusement mainly, 
and we realized that the sonificated chromatin signals were sur-
prisingly harmonious. We then tried to assess some properties 
of the music tracks we were able to generate. We show that the 
emerging sounds are not random and instead appear more melodi-
ous and tuneful than music generated from randomized notes. We 
also show that different ChIP-seq signals can be combined into a 
single musical track and that tracks representing different condi-
tions can be compared allowing for the prediction of differentially 
expressed genes.

Examples of sonification for various genomic loci are available at 
https://soundcloud.com/davide-cittaro/sets/k562.

Definitions
MIDI: MIDI (Musical Instrument Digital Interface) is a standard 
that describes protocols for data exchange among a variety of digital 
musical instruments, computers and related devices. MIDI format 
encodes information about note notation, pitch, velocity and other 
parameters controlling note execution (e.g. volume and signals for 
synchronization).

MIDI file format: a binary format representing MIDI data in a hier-
archical set of objects. At the top of hierarchy there is a Pattern, 
which contains a list of Tracks. A Track is a list of MIDI events, 
encoding for note properties. MIDI events happen at specific time, 
which is always relative to the start of the track.

MIDI Resolution: resolution sets the number of times the sta-
tus byte is sent for a quarter note. The higher the resolution, the 
more natural the sound is perceived. Resolution is the number of 
Ticks per quarter note. At a specific resolution R, Tick duration in 
microseconds T is related to tempo (expressed in Beats per Minute, 
BPM) by the following equation

60RT
BPM

=

Results
Approach
In order to translate a single ChIP-seq signal track to music we 
bin the signal over a specified genomic interval (i.e. chrom:start-
end) into fixed-size windows (e.g. 300 bp) and note duration will be 
proportional to the size of such windows. As we are dealing with 
MIDI standard, we let the user specify track resolution and the 
number of ticks per window (see Definitions); the combination of 
these parameters defines the duration of a single note. The default 
parameters associate a bin of 300 bp with one quaver (1/8 note).

In order to define the note pitch, we take the logarithm of the 
average intensity of the ChIP-seq signal in a genomic bin. The 
sounding range of the whole signal is discretized in a predefined 
number of semitones. At default parameters, the range is binned 
into 52 semitones, covering four octaves. In order to introduce 
pauses, the lowest bin of the signal range represents a rest. If two 
consecutive notes or rests fall in the same bin, we merge them in 
one note doubling its duration.

Using this approach, any ChIP-seq signal can be mapped to a chro-
matic scale. We implemented the possibility to map a signal on a 
different scale (major, minor, pentatonic…); to this end, intensity 
bin boundaries are merged according to the definition of a specific 
scale (Figure 1). MIDI tracks produced in this way can be then 
imported into a sequencer software where they can be further proc-
essed, setting tempo and time signature.

Music produced from chromatin marks is not perceived as 
a random pattern
In order to test whether sonification of chromatin marks are per-
ceived as random patterns, we selected ten genomic regions and 
generated corresponding tracks based on the following histone 
modifications: H3K27me3, H3K27ac, H3K9ac, H3K36me3, 
H3K4me1, H3K4me2, H3K4me3, H3K9me3 (Supporting Audio 
files S1.1 to S10.1). For the same regions, we randomized genomic 
signal at base and bin level (Supporting Audio files S1.2 to S10.2). 
When data are randomized at base level, the average intensity is 
uniforms across the bins, resulting in a repeated note; this is largely 
expected as ChIP-seq signals are distributed on the genome according 
to a Poisson law7 or, more precisely, to a Negative Binomial law8.

Randomization at bin level, instead, equals to shuffling notes 
during the execution. We administrated a questionnaire to a set of 
volunteers (n=8) not previously tested for education in music. Vol-
unteers were asked to listen to each pair of original/random track 
and choose which track they felt was more appealing. Track order 
was randomized when testing different volunteers. Notably, in the 
majority of the cases (62/80) the music generated from genomic 
signal without randomization was judged more appealing. Results 
are significant to a Fisher-exact test (p=1.95e-3), suggesting that 
genomic signals contain information that can be recognized by 
human ear. The number of correct answers for each volunteer 
ranged from 5 to 10, with a median value of 8.

Differences in musical tracks reflect differences in gene 
expression
Once we assessed the existence of musical patterns in genomics 
signals, we were keen to explore if this kind of information could 
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be exploited to identify biological features of samples. Since the 
epigenetic DNA modifications reflected by histone marks influence 
gene expression9, we tested if differences in musical tracks gen-
erated from various ChIP-seq signals reflects differences in gene 
expression of the corresponding loci. To this end, we downloaded 
ChIP-seq marks (H3K27me3, H3K27ac, H3K9ac, H3K36me3, 
H3K4me1, H3K4me2, H3K4me3, H3K9me3, Pol2b) and RNA-seq 
data for K562 and NHEK cell lines from the ENCODE project10. 
For each RefSeq locus we converted ChIP-seq signals to music 
with fixed parameters (see Methods). RNA-seq data were used to 
identify genes that are differentially expressed between the two cell 
lines, under a p-value <0.01 and |logFC|>1, according to recent 
SEQC recommendations11.

A common way to classify music is based on summarization of 
track features after spectral analysis12,13. Such approach involves 
the summarization of track as Mel-Frequency Cepstral Coefficients 
(MFCC) that are subsequently clustered using Gaussian Mixture 
Models (GMM). A distance between tracks can then be defined as 
described in 14, who used it as a classifier for musical genres.

We tested if a similar approach could be used to develop a predictor 
of differential expression based on the distance between musical 
tracks generated from two cell lines.

We defined a distance between songs as described in methods and 
we optimized the parameters using as a training set the 250 genes 
with the most significant differential expression p-value and as 
many genes with the least significant p-value according to RNA-seq 
(Figure 2). We found that optimal performance is at MFCC=30 and 
GMM=10, with an AUC=0.609.

We summarized tracks representing all RefSeq genes using such 
parameters, we then compared distances with differential expres-
sion performing a ROC analysis. Our results indicate that dif-
ferences in information contained in musical representation of 
chromatin signals may be linked to differential expression, although 
power of prediction is limited (AUC=0.5184, p=1.4597e-03).

Similarity between musical tracks overlaps similar 
biological properties
An additional issue we wanted to assess was if similarities between 
musical representation of chromatin status may be linked to the 
biology of the underlying genes. To this end, we calculated pairwise 
distances for all regions using parameters identified above on K562 
cell line. Hierarchical clustering of the distance matrix identifies 
eight major clusters (Figure 3, left). We performed Gene Ontology 
Enrichment analysis on each cluster, here represented as word cloud 
of significant terms (Figure 3, center, Supplementary table 1); we 

Figure 1. Graphical representation of the approach used to transform quantitative signals to music. ChIP-seq values (H3K4me3 in 
the example) are binned in fixed-size intervals over the genome. Each interval corresponds to a 1/8 note. Average values of log-transform 
of read counts in each genomic bin (red lines) are matched into predefined number of semitones (chromatic scale). Notes may be mapped 
to a specified scale (major and minor scales are exemplified in the figure). Consecutive equal notes are merged in single note with double 
duration. Values falling in the first bin are considered rests.
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Figure 2. Evaluation of different combination of parameters 
in predicting differential gene expression on a gold-standard 
subset of 500 genes. Each square corresponds to a number of Mel-
Frequency Cepstral Coefficients (MFCC) used to summarize signal 
and a number of centers for Gaussian Mixture Model (GMM). Colors 
are given by the corresponding Area Under the Curve (AUC).

found that different clusters are linked to genes showing different 
biological properties. For example, some clusters (6, 7 and 8) were 
linked to regulation of cell cycle, others were linked to metabolic 
processes (2 and 5) or vesicle transport (3 and 4). We also evalu-
ated the distribution of expression (expressed as log(RPKM)) of the 
underlying genes (Figure 3, right); we found that regions clustered 
by the distance between musical tracks broadly reflects groups of 
genes with different level of expression, spotting clusters of higher 
expression (cluster 5) or lower expression (clusters 2 and 3); assess-
ment of statistical significance of differences in distribution of gene 
expression values among clusters is presented in Table 1.

Discussion
Chromatin shape and genome function are governed, among sev-
eral factors, by the coordinated organization of epigenetic marks15. 
Modifications of such marks are dynamic and are fine-tuned during 
the life of a cell or an organism. Analysis of histone modifications, 
as well as transcription factors and other proteins binding DNA, by 
ChIP-seq already described patterns of enrichment that are specific 
to their relative function16,17. Analysis of combinatorial patterns of 
histone modifications already unveiled its potential in understand-
ing functional properties of the genome18,19 and the cross-talk among 
multiple chromatin marks20.

We show, in this work, that the information carried by multiple 
histone modifications can be caught in a human-friendly way by 
translating ChIP-seq signals into musical scores. Although the 
investigation of the psychological factors that underlie tuneful per-
ception of sonificated genomic signals is out of the scope of this 
manuscript, our results suggest that human hearing is able to per-
ceive patterns conveying information encoded in ChIP-seq data 
analyzed and to distinguish from random noise.

Figure 3. Hierarchical clustering of genomic regions identifies 8 main clusters (left). Each cluster broadly corresponds to specific 
biological properties according to Gene Ontology enriched terms (middle). Level of expression of genes included in each cluster show 
specific distributions (right).
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We automated the analysis of differences between musical tracks 
using an established method based on summarization of spectral 
data. By this approach, we investigated the possible link between 
differences in ways chromatin sounds and phenotypic features. 
Our results suggest that differences in transcript levels can be pre-
dicted by the differences of sonificated genomic regions, although 
performances of such approach are limited. We reasoned that 
many factors may explain such poor results: first of all there is 
a vast space of parameters that can be tuned to create a single 
musical track and we still lack methods to explore it efficiently. In 
addition, the Mel scale used to summarize audio signal has been 
developed to match human capabilities to perceive sound21, hence 
it may not be optimal for the comparison of the tracks generated 
in this work.

It has already been shown that it is possible to predict levels of gene 
expression starting from chromatin states, although the method 
used to perform chromatin segmentation has a large impact on such 
predictions22. In this work we found that differences in chromatin-
derived music reflects, to some extent, differences in the level of 
expression of underlying genes and their related biology.

To conclude, although we cannot advocate the usage of musical 
analysis as universal tool to analyze biological data yet, we confirm 
that quantitative features on the genome are patterned and contain 
information, hence can be converted into sounds that are perceived 
as musical. We limited our analysis on specific chromatin modifica-
tions, but in principle any quantitative genomic feature can be con-
verted and integrated into a musical track. The choice of parameters 
and instruments has been standardized for the analysis presented, 
for illustrative purpose we show that different signals from the same 
region can be combined using different instruments (https://sound-
cloud.com/davide-cittaro/random-locus-blues) and signals from 
different genomic regions can be merged (https://soundcloud.com/
davide-cittaro/non-homologous-end-joining).

Materials and methods
Sonification of ENCODE ChIP-seq data
Raw data for various modifications were downloaded from GEO 
database (GSE26320, http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE26320). Read tags were aligned to human genome 

(hg19) using BWA aligner v0.7.223. Alignments were converted to 
bigwig tracks24 after filtering for duplicates and quality score higher 
than 15:

for file in *.bam

do

  samtools view -q 15 -F 0x400 -u $file | \

  bedtools bamtobed -i stdin | \

  bedtools slop -i stdin -l 0 -r 250 -g hg19.chromSizes | \

  bedtools genomecov -g hg19.chromSizes -i stdin -bg | \

  wigToBigWig  stdin  hg19.chromSizes ${file%%.bam}.bigwig

done

In order to define regions to be converted to music scores, we 
selected intervals around RefSeq gene definition, from 1kb upstream 
of TSS to 2kb downstream of TES. ChIP-seq signals were firstly 
converted to MIDI using custom scripts (https://bitbucket.org/dawe/
enconcert) according to parameters defined in Table 2. MIDI tracks 
belonging to the same region from the same sample were merged 
into a single MIDI file, converted to WAV format using timidity 
software v2.14.0 (http://timidity.sourceforge.net), with the excep-
tion of tracks presented as Supplementary audio files which have 

Table 1. p-values of Mann-Whitney U-test for differences in distribution of expression between 
clusters. Tests showing significant difference (p ≤ 0.05) are presented in bold face.

Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

Cluster 1 2.635e-23 3.548e-18 8.127e-37 8.627e-125 2.859e-83 3.231e-71 3.169e-63

Cluster 2 1.068e-01 2.008e-01 4.005e-01 2.801e-01 7.907e-02 9.467e-02

Cluster 3 2.880e-01 2.225e-02 1.399e-01 3.910e-01 3.745e-01

Cluster 4 4.159e-02 3.025e-01 2.614e-01 2.821e-01

Cluster 5 5.098e-04 3.898e-09 7.586e-07

Cluster 6 1.259e-02 2.866e-02

Cluster 7 4.545e-01

Table 2. Parameters used to convert different ChIP-seq 
signals into corresponding musical tracks.

Antibody Scale Octave Key Tick Size Bin Size

H3K27me3 minor 4 B 600 400

H3K27ac minor 3 B 900 600

H3K9ac minor 3 B 1200 800

H3K36me3 minor 4 B 300 200

H3K4me1 minor 3 B 1200 800

H3K4me2 minor 3 B 300 200

H3K4me3 minor 3 B 300 200

H3K9me3 minor 4 B 300 200

Pol2 minor 4 B 600 400
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been processed with GarageBand software v10.1.0 (Apple Inc., 
Cupertino, USA).

Comparison of WAV tracks
In order to compare four samples for each converted genomic 
region, we extracted MFCC using python_speech_features library 
(https://github.com/jameslyons/python_speech_features). Selected 
components were then clustered using Gaussian Mixture Models, 
implemented in scikit-learn python library 0.15.2 (http://scikit-
learn.org). Distances between two tracks were evaluated using 
Hausdorff distance (H) between GMM clusters. Briefly, we first 
calculate all pairwise distances between GMM clusters using 
Bhattacharyya distance (B) for multivariate normal distributions as

1
0 1 0 1

0 1

1 1
( ) ( )

8 2
T P

B P logµ µ µ µ
∑ ∑

−= − − +

where

0 1

2
P ∑ ∑+

=

then, as GMM are not ordered, we take the Hausdorff distance (H) 
as the maximum between the row-wise and column-wise minimum 
of the pairwise distances between two GMM sets. ROC analysis on 
music distances was performed over the value of D, defined as

(1 ) (1 )D log log wb= + − +

where

( 562 562 ) ( )

2
a b a bH K ,K H NHEK ,NHEKw +

=

is the average of distances between replicates and

( 562 ) ( 562 ) ( 562 ) ( 562 )

4
a a a b b a b bH K ,NHEK H K ,NHEK H K ,NHEK H K ,NHEKb + + +

=

is the average of pairwise distances among different cell lines.

Assessment of differentially expressed genes
RNA-seq tags were downloaded from GEO archive (GSE30567, 
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30567) 
and aligned to human reference genome (hg19) using STAR aligner 
v2.3.025. Read counts over RefSeq intervals were extracted using 
bedtools v.2.24.026. Discrete counts were normalized with TMM27, 
differential gene expression was evaluated using the voom function 
implemented in limma v.3.26.728 with a simple contrast between 
two cell lines. Genes were considered differentially expressed under 

a p-value lower than 0.01 and absolute logarithm Fold Change 
higher than 1.

Cluster analysis
Cluster analysis was performed on replicate 1 of K562 dataset. We 
calculated all pairwise Hausdorff distances among genomic loci as 
defined above. Data were clustered using the Ward method. Enrich-
ment analysis was performed using online Enrichr suite29. Word 
clouds were created with world_cloud python package (https://
github.com/amueller/word_cloud) using text description of ontolo-
gies having positive Enrichr combined score. Differential expres-
sion among clusters was evaluated using Mann-Whitney U-test.

Consent
Written informed consent for publication was obtained from the 
study participants.
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 Federico M Giorgi
Department of Systems Biology, Columbia University, New York, NY, USA

The article "Chromas from chromatin: sonification of the epigenome" proposes a new and original method
to sonify (i.e. convert into music) data information coming from the analysis of the epigenome.

The paper is extremely well written and it should be indexed on the basis of being the first to try this kind
of review. The results of Cittaro 's work, although without an immediate applicability in the field of et al.
biomedicine, is by itself a small scientifical breakthrough.

My only concerns regard the applicability of the sonification method as a truly alternative way to detect
biological properties.

The authors imply that similar biological features (e.g. belonging to a particular pathway,  differential
expression) could be discerned by listening to gene-centered audio tracks. I listened to such tracks and I
concur, but to be scientifically complete, the authors may think (even as a follow up paper) to test this on a
wider subject set. I would propose a psychological study with a blind panel of human subjects, who are
then asked, after listening to some biological properties on a "training set", to find genes with similar
properties on a "test set".

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 18 March 2016Referee Report

doi:10.5256/f1000research.8610.r12735

 Ho-Ryun Chung
Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany

“Chromas from chromatin: sonification of the epigenome” by Cittaro . deals with the transformation ofet al
ChiP-seq profiles into music. The authors transform BigWig files into notes by discretizing the logarithm of
the signal intensity. Test individuals perceive the resulting music as more appealing than randomized
controls. The authors explore the possibility to use the music to discern differentially expressed genes in

two cell lines from unchanged ones. The classification accuracy is a little bit better than random guessing.
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two cell lines from unchanged ones. The classification accuracy is a little bit better than random guessing.
They also use the similarity of the music to cluster genes. They claim that the clustering reveals genes
with similar biological properties. They also show that the clustering is correlated to the gene expression
level.
 
I find the idea really interesting. It may help the vision impaired to gather information about ChIP-seq
tracks or other quantitative vector like information. It may be used to train individuals to recognize certain
epigenomic features, like promoters and enhancers.
 
I find it not so surprising that the chromatin music is more appealing to test persons than randomized
controls, because of the smoothness of the ChIP-seq profile data. Smoothness guaranties that
subsequent notes are close by forming a more melodious line. Once randomized it results in random
notes, which may be far apart and are perceived by most as not so appealing. Thus, humans can
distinguish between smooth signals and signals that change abruptly and perceive the former more
appealing than the latter. But clearly there is information in the music that can be exploited by the human
ear.
 
The analyses about differential gene expression and gene clustering use the music as a feature in
computer-aided classification tasks. These analyses show that there is some information in the music that
a computer can recognize and use for classification. However, a base line using just the ChIP-seq profiles
without turning them to music is missing. Without such a base line it remains hard to judge whether the
reported results are meaningful or not. Moreover, I think that the classification results shown in Figure 3
are likely to reflect gene expression differences rather than gene function clustering. 

Are the p-values reported in Table 1 for a one- or two-sided test? I do not understand why cluster 2 is not
different from all the others except cluster 1.
 
I think the real potential in chromatin music is not so much in its use in machine learning approaches – it is
much better suited for humans learning chromatin states and the like. Humans may be able to recognize
patterns that a machine cannot. It would be really interesting to compare a human made chromatin
segmentations using chromatin music with a segmentation generated from the ChIP-seq signals by a
computer.
 
Finally, the proposed tool can be used to reach out to the public and demonstrate ideas about epigenomic
states etc. using an easily accessible medium such as music.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

 15 March 2016Referee Report

doi:10.5256/f1000research.8610.r12733

 Tao Liu1,2
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1.  

2.  

3.  

 Tao Liu
 Department of Biochemistry, University at Buffalo, Buffalo, NY, USA
 Department of Biostatistics, University at Buffalo, Buffalo, NY, USA

To translate functional genomics data in ChIP-seq to music pieces is entertaining. Cittaro 's worket al
showed that, the chromatin data which has wider dynamic range is suitable (in my opinion perhaps more
suitable than DNA/protein sequences in spite of lacking supporting evidence) for making appealing
music. I feel excited while reading the manuscript and listening to the music pieces made by the authors
at the same time.This work definitely has the novelty and importance especially for education and popular
science. I believe more students and general public will be attracted by the chromatin songs then start to
learn the science behind them. Because I don't have the expertise of music theory, I won't comment on
the quality of the chromatin music or the methods to tune the music. Since authors showed the music
patterns may also reflect the biology on the chromatin and may be associated with gene expression. I will
focus on these. 

Authors translated chromatin marks ChIP-Seq data from human K562 and NHEK cell lines at
refSeq gene bodies from upstream 1k of TSS to 2kb downstream of TES, then tried to study if the
music patterns can match the differential gene expression inferred from RNA-Seq.  The prediction
power was quite low, as pointed out by the authors, with an AUC of 0.52 ( just a little better than
random) with the optimal combination of parameters got from a subset of genes. A natural question
is that how well the prediction is by directly using chromatin signals, such as the tags pileup. By
comparing with this, we will see whether the underlying biology has been kept or lost during the
approach. 
 
Authors showed that the similarities, in terms of hierarchical clustering, of musical representation at
gene bodies, from the K562 cell line, can be linked to gene functions and similar gene expression.
However I found it's hard to see the consistency of the similarities of music with the similarities of
gene function annotations. For example, the cluster 7 and 8 are the closet pair of clusters, although
authors claimed that clusters 6,7,8 were linked to regulation of cell cycle, I can't see such words
from the word clouds of the middle panel of figure 3.  Instead, I can see that the cluster 1, 3, 5 and
7 all have the same term of biological function 'protein' although they are apart according to the
hierarchical clustering. The gene expression analysis is also confusing while looking at the right
panel of figure 3 and table 1. It seems that for all the clusters there are two major distributions of
gene expression levels from the violin plots -- a big one at log(RPKM) less than 1 and a small one
around log(RPKM) of 2. Does that mean the big population of each cluster are just random noises
of weakly expressed genes (logRPKM<1)? The numbers of genes in each cluster were also
missing in the manuscript. I wonder perhaps the cluster 2 contains very few genes  since although
visually it seems the distribution of gene expression of cluster 2 is quite different with all the other
clusters, the p-values of the row 2 of table 1 (cluster 2 against 3, 4, 5, 6,7 and 8) are all very small,
indicating no significant difference. Additionally, I should bring my comment of point 1 here as well.
How the clustering works while checking only the raw ChIP-Seq pileup?
 
Comments on method section:
For the equations of 'comparison of WAV track', the notations were not explained clearly.
 
Description on how the RPKM was calculated is missing. 
 
The bases of logarithm functions are missing for the 'log(RPKM)' of gene expression level and the
'absolute logarithm fold change' used to define differential expressed genes.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that

1,2

1

2
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I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:
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